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Fluctuating filaments: Statistical mechanics of helices

S. Panyukov* and Y. Rabin†

Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
~Received 19 May 2000!

We examine the effects of thermal fluctuations on thin elastic filaments with noncircular cross section and
arbitrary spontaneous curvature and torsion. Analytical expressions for orientational correlation functions and
for the persistence length of helices are derived, and it is found that this length varies nonmonotonically with
the strength of thermal fluctuations. In the weak fluctuation regime, the local helical structure is preserved and
the statistical properties are dominated by long-wavelength bending and torsion modes. As the amplitude of
fluctuations is increased, the helix ‘‘melts’’ and all memory of intrinsic helical structure is lost. Spontaneous
twist of the cross section leads to resonant dependence of the persistence length on the twist rate.

PACS number~s!: 87.15.Aa, 87.15.Ya, 05.40.2a
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I. INTRODUCTION

Modern polymer physics is based on the notion that wh
real polymers can be arbitrarily complicated objects, th
universal features are captured by a minimal model in wh
polymers are described as continuous random walks. W
this approach has been enormously successful and led to
merous triumphs such as the understanding of rubber ela
ity @1#, the solution of the excluded volume problem and t
theory of semidilute polymer solutions@2#, it is ill suited for
the description of nonuniversal features of polymers t
may depend on their chemical structure in a way that can
be captured by a simple redefinition of the effective mon
mer size or its second virial coefficient. For relatively simp
synthetic polymers, such ‘‘local details’’ can be treated
polymer chemistry-type models~e.g., rotational isomer stat
model @3#!. However, chemically detailed approaches b
come prohibitively difficult~at least as far as analytical mod
eling is concerned! in the case of complex biomolecules su
as DNA, proteins, and their assemblies and a new type
minimal model is needed to model recent mechanical exp
ments on such systems@4–12#. Such an alternative approac
is to model polymers in the way one usually thinks of the
i.e., as continuous elastic strings or filaments that can
arbitrarily deformed and twisted. However, while the theo
of elasticity of such objects is well developed@13#, little is
known about the statistical mechanics of fluctuating fi
ments with arbitrary natural shapes. The main difficulty
mathematical in origin: the description of three-dimensio
filaments with noncircular cross section and nonvanish
spontaneous curvature and twist@14#, involves rather com-
plicated differential geometry@15# and most DNA-related
theoretical studies of such models assumed circular c
sections and focused on fluctuations around the straight
configuration@16–20#.

Recently, we reported a study of the effect of therm
fluctuations on the statistical properties of filaments w
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arbitrary spontaneous curvature and twist@21#. In this paper
we present a detailed exposition of the theory and of
application to helical filaments. In Sec. II we introduce t
description of the spatial configuration of the filament
terms of a triad of unit vectors oriented along the princip
axes of the filament, and show that all the information ab
this configuration can be obtained from the knowledge o
set of generalized torsions. The elastic energy cost assoc
with any instantaneous configuration of the filament, is e
pressed in terms of the deviations of the generalized tors
that describe this configuration, from their spontaneous v
ues in some given stress-free reference state. We use
energy to construct the statistical weights of the differe
configurations and show that the deviations of the gene
ized torsions behave as Gaussian random noises, whose
plitudes are inversely proportional to the bare persiste
lengths that characterize the rigidity associated with the
ferent deformation modes. We then derive the differen
equations for the orientational correlation functions that c
be expressed as averages of a rotation matrix that gene
the rotation of the triad vectors as one moves along the c
tour of the filament. An expression for the persistence len
in terms of one of the correlators is derived. In Sec. III w
apply the general formalism to helical filaments and der
exact expressions for the correlators~see Appendix A! and
for the effective persistence length of an untwisted helix. W
show that the persistence length is, in general, a nonmo
tonic function of the amplitudes of thermal fluctuations. W
also show that in the weak fluctuation regime, our exact
pressions for the correlators can be derived from a simpli
long-wavelength description of the helix, which is equivale
to the incompressible rodlike chain model@18#, and that the
fluctuation spectrum is dominated by the Goldstone mo
of this rodlike chain. Analytical expressions for the pers
tence length of a spontaneously twisted helix are derived~see
Appendix B! and it is found that this length exhibits reso
nantlike dependence on the rate of twist. Finally, in Sec.
we discuss our results and outline directions for future
search.

II. GENERAL THEORY OF FLUCTUATING FILAMENTS

A filament of small but finite and, in general, noncircul
cross section, is modeled as an inextensible but deform

ics
ia.
7135 ©2000 The American Physical Society
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7136 PRE 62S. PANYUKOV AND Y. RABIN
physical curve parametrized by a contour lengths (0<s
<L whereL is the length of the filament!. To each points
one attaches a triad of unit vectors$t(s)% whose componen
t3 is the tangent vector to the curve ats, and the vectorst1(s)
andt2(s) are directed along the two axes of symmetry of t
cross section. The vectors$t(s)%, together with the inexten
sibility condition dx/ds5t3, give a complete description o
the space curvex(s), as well as of the rotation of the cros
section~i.e., twist! about this curve.

The rotation of all the vectorst i of the triad as one move
from point s to point s8 along the line, is generated by th
rotation matrixR(s,s8)

t i~s!5(
j

Ri j ~s,s8!t j~s8!. ~1!

The rotation matrix has the property

R~s,s8!5R~s,s9!R~s9,s8!, ~2!

wheres9 is an arbitrary point on the contour of the filamen
It satisfies the equation

]Ri j ~s,s8!

]s
52(

k
V ik~s!Rk j~s,s8!, ~3!

where

V i j 5(
k

« i jkvk . ~4!

« i jk is the antisymmetric tensor and$vk% will be referred to
as generalized torsions, for lack of a better term. The ab
equations are supplemented by the ‘‘initial’’ conditio
Ri j (s,s)5d i j , where d i j is the Kronecker delta function
The formal solution of Eq.~3! is given by the ordered expo
nential

R~s,s8!5TsexpS 2E
s8

s

ds9V~s9! D
5 lim

Ds→01

e2V(sn)Ds
•••e2V(s2)Dse2V(s1)Ds. ~5!

The ordering operator with respect tos, Ts is defined by the
second equality in the above equation, where we broke
interval s2s8 into n parts of lengthDs each, so thats1
5s8 andsn5s. The origin of the difficulty in calculating the
above expression is that the matricesV(s) andV(s8) do not
commute forsÞs8 @this is related to the non-Abelian cha
acter of the rotation group in three dimensions~3D!#.

Equation~3! is equivalent to a set of generalized Fren
equations from which one can calculate the spatial confi
ration of the filament, given a set of generalized torsio
$vk%,
e

e

t
-

s

dt1

ds
5v2t32v3t2 ,

dt2

ds
52v1t31v3t1 ,

dt3

ds
5v1t22v2t1 . ~6!

Note that in the original Frenet description of space curve
terms of a unit tangent~which coincides witht3), normal
(n), and binormal (b), one considers mathematical lines f
which it would be meaningless to define twist about the c
terline @22#. The Frenet equations contain only two para
eters, the curvaturek and torsiont:

db

ds
52tn,

dn

ds
52kt31tb,

dt3

ds
5kn. ~7!

The two frames are related through rotation by an anglea
about the common tangent direction~see Fig. 1!,

t15b cosa1n sina, t252b sina1n cosa. ~8!

Substituting this relation into Eqs.~6! and using Eqs.~7!, we
relate the generalized torsions$vk% to the curvaturek, tor-
sion t, and twist anglea,

v15k cosa, v25k sina, v35t1da/ds. ~9!

The theory of elasticity of thin rods@13# is based on the
notion that there exists a stress-free reference configura
defined by the set of spontaneous~intrinsic! torsions$v0k%.
The set $v0k% together with Eqs.~3! and ~4! ~with vk
→v0k) completely determines the equilibrium shape of t
filament, in the absence of thermal fluctuations. Neglect
excluded-volume effects and other nonelastic interaction
can be shown@23# that the elastic energy associated w
some actual configuration$vk% of the filament is a quadratic
form in the deviationsdvk5vk2v0k

Uel~$dvk%!5
kT

2 E
0

L

ds(
k

akdvk
2 , ~10!

whereT is the temperature,k is the Boltzmann constant, an
ai are bare persistence lengths that depend on the el

FIG. 1. Schematic drawing of a twisted ribbonlike filament. T
vectors of the physical (t1 ,t2) and the Frenet (b,n) triad can be
brought into coincidence through rotation by anglea, about the
common tangent (t3).
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PRE 62 7137FLUCTUATING FILAMENTS: STATISTICAL . . .
constants and on the principal moments of inertia with
spect to the symmetry axes of the cross section, in a mo
dependent way. Thus, assuming anisotropic elasticity~with
elastic moduliEi) and a particular form of the deformation
one obtains @23# a15E1I 1 /kT, a25E1I 2 /kT, and a3
5E2(I 11I 2)/kT, whereI i are the principal moments of in
ertia. In general, the theory of elasticity of incompressi
isotropic rods with shear modulusm yields @13# a1
53mI 1 /kT, a253mI 2 /kT, and a35C/kT, where the tor-
sional rigidityC is also proportional tom and depends on th
geometry of the cross section@24# @for an elliptical cross
section with semiaxesb1 andb2 , C5pmb1

3b2
3/(b1

21b2
2)].

The elastic energyUel($dvk%) determines the statistica
weight of the configuration$vk%. The statistical average o
any functional of the configurationB($vk%) is defined as the
functional integral

^B~$vk%!&5

E D$dvk%B~$vk%!e2Uel$dvk%/kT

E D$dvk%e
2Uel$dvk%/kT

. ~11!

Calculating the corresponding Gaussian path integrals
obtain

^dv i~s!&50, ^dv i~s!dv j~s8!&5ai
21d i j d~s2s8!.

~12!

We conclude that fluctuations of generalized torsions at
different points along the filament contour are uncorrelat
and that the amplitude of fluctuations is inversely prop
tional to the corresponding bare persistence length.

The statistical properties of fluctuating filaments are
termined by the orientational correlation functions, whi
can be expressed as averages of the elements of the ro
matrix,

^t i~s!t j~s8!&5^Ri j ~s,s8!&5(
k

^Rik~s,s9!Rk j~s9,s8!&

~13!

The last equality was written using Eq.~2!, with s.s9
.s8. Inspection of Eqs.~5! and ~4!, shows thatR(s,s9)
depends only on the torsionsvk(s1) with s.s1.s9, and
that R(s9,s8) depends only onvk(s2) with s9.s2.s8.
Since fluctuations of the torsion in two nonoverlapping int
vals are uncorrelated@see Eq.~12!#, the average of the prod
uct of rotation matrices splits into the product of their av
ages:

^Ri j ~s,s8!&5(
k

^Rik~s,s9!&^Rk j~s9,s8!&. ~14!

In order to derive a differential equation for the averag
rotation matrix, we consider the limitDs5s2s9→0. Keep-
ing terms to first order inDs we find

]^Ri j ~s,s8!&
]s

52(
k

L ik~s!^Rk j~s,s8!&, ~15!

where the matrixL is defined as
-
el-

e

o
,

-

-

tion

-

-

d

L ik~s!5 lim
Ds→01

d ik2^Rik~s,s2Ds!&
Ds

. ~16!

Analogously to Eq.~5!, the formal solution of Eq.~15! can
be written as an ordered exponential,

^R~s,s8!&ÄTs expS 2E
s8

s

ds9L~s9! D . ~17!

In order to calculate the matrixL we expand the exponentia
in Eq. ~5! to second order inDs5s2s8 and use the property
of the ordering operator

TsE
s2Ds

s

ds1E
s2Ds

s

ds2V~s1!V~s2!

5E
s2Ds

s

ds1F E
s2Ds

s1
ds2V~s1!V~s2!

1E
s1

s

ds2V~s2!V~s1!G . ~18!

In order to average this equation, we first calculate the av
age of the productV(s1)V(s2), using Eqs.~4! and ~12!

^V~s1!V~s2!&5^V~s1!&^V~s2!&1Md~s12s2!, ~19!

whereM is a diagonal matrix with elements

g i5(
k

1

2ak
2

1

2ai
. ~20!

Using Eqs. ~18! and ~19!, and keeping terms up to
first order in Ds @upon integration, the contribution o
^V(s1)&^V(s2)& is of order (Ds)2], yields

L ik5g id ik1(
l

« iklv0l . ~21!

The elements of the averaged rotation matrix are sim
the correlators of the triad vectors@see Eq.~13!#. From the
knowledge of the above correlators one can calculate o
statistical properties of fluctuating filaments, the most fam
iar of which is the persistence lengthl p , that can be inter-
preted as an effective statistical segment length of a coa
grained model, in which one replaces the filament by
random walk with the same contour lengthL and rms end-
to-end separation̂r 2&:

l p5 lim
L→`

1

2L
^r 2& .

The end-to-end vector is defined asr5*0
Lt3(s)ds and thus

l p5 lim
L→`

1

L E
0

L

dsE
0

s

ds8^t3~s!t3~s8!&. ~22!

The above equations describe the fluctuations of filament
arbitrary shape and elastic properties, and in the follow
section this general formalism is applied to helical filamen
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7138 PRE 62S. PANYUKOV AND Y. RABIN
III. FLUCTUATING HELICES

A. Untwisted helix: Correlation functions
and persistence length

Consider a helical filament without spontaneous tw
such that the generalized spontaneous torsions$v0k% are in-
dependent of positions along the contour. In order to de
scribe the stress-free configuration of such a filament, i
convenient to introduce the conventional Frenet triad, wh
consists of the tangent, normal and binormal to the sp
curve spanned by the centerline, supplemented by a con
angle of twist a0 , which describes the orientation of th
cross section in the plane normal to the centerline. Accord
to the general relation between the two frames, Eq.~9!, v01
5k0 cosa0, v025k0 sina0, andv035t0, wherek0 and t0
are the constant curvature and torsion of the space curv
terms of which the total spontaneous curvature that defi
the rate of rotation of the helix about its long axis, is giv
by v05(k0

21t0
2)1/2. The corresponding helical pitch i

2pt0 /v0
2 and the radius of the helical turn isk0 /v0

2. We
proceed to calculate the orientational correlation function

Since L is a constant matrix, Eq.~17! yields ~for s1
.s2)

^t i~s1!t j~s2!&5@e2L(s12s2)# i j . ~23!

In order to calculate the matrixe2L(s12s2) we first find the
eigenvaluesl i of the matrixL, which are determined by th
characteristic polynomial

l32gl21ml2n50, ~24!

where we introduced the notations

g5g11g21g35a1
211a2

211a3
21 , ~25!

m5v0
21g1g21g2g31g1g3 , ~26!

n5k0
2~g1cos2a01g2sin2a0!1t0

2g31g1g2g3 . ~27!

The solution of this cubic equation depends on the sign
the expression

D527~n2n1!214~m2g2/3!3, n15
1

3
gm2

2

27
g3.

~28!

For D,0 all the rootsl i are real. In this parameter rang
fluctuations are strong enough to destroy the helical struc
on all length scales. In the limit of very strong fluctuatio
when the bare persistence lengths are much smaller tha
radii of curvatureg@v0, we havel i→g i and correlation
functions become

^t i~s1!t j~s2!&5e2g i (s12s2)d i j ~29!

with s12s2.0. Equation~29! shows that although angula
correlations remain on length scales smaller than 1/l i , they
are identical to those of a persistent rod and do not carry
memory of the original helix.

In the caseD.0, there is one real eigenvalue,l1, and
two complex ones,l2,35lR6 iv, where
t,

is
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y

l15
K

6
22

m2g2/3

K
1

g

3
, lR5

g2l1

2
, ~30!

v5A3S K

12
1

m2g2/3

K D , K5121/3@9~n2n1!1A3D#1/3.

~31!

It is shown in Appendix A that the diagonal orientation
correlation functions take the form

^t i~s1!t i~s2!&5~12ci2ci* !e2l1s

1~cie
2 ivs1ci* eivs!e2lRs, ~32!

wheres5s12s2.0. The complex coefficientsci are calcu-
lated in Appendix A.

In the limit of small fluctuations,g!v0, we have

l15(
i

~122ci !g i , lR5(
i

cig i ,

2ci512
v0i

2

v0
2

, v25v0
2 . ~33!

In this limit, it is easy to generalize our results for the dia
onal correlators and write down expressions for all the o
entational correlation functions:

^t i~s1!t j~s2!&5
v0iv0 j

v0
2

e2l1s

1S d i j 2
v0iv0 j

v0
2 D cos~v0s!e2lRs

2(
k

« i jk

v0k

v0
sin~v0s!e2lRs, ~34!

wheres5s12s2.0. As expected, Eq.~34! satisfies the con-
dition of orthonormality of triad vectorst i(s1)t j (s1)5d i j
~this geometric condition must be satisfied for the instan
neous triad vectors, not only on the average!. Note that in the
limit of weak fluctuations the local helical structure is pr
served on contour distancess,lR

21 and the period of rota-
tion of the helix about its axis is given by its spontaneo
value, 2pv0

21.
Using Eqs.~25!–~28! it can be shown that whenD→0,

the total curvature of the helix vanishes asv;D1/2. Sincev
is positive forD.0 and vanishes forD<0, in a loose sense
it plays the role of an order parameter associated with hel
order, and the pointD50 can be interpreted as the critic
point at which a continuous helix to random coil transitio
takes place. However, although the dependence ofv on the
various parameters exhibits surprisingly rich behavior,
investigation of the transition region is of limited physic
significance. The change of the helical period from 2pv0

21

to infinity takes place in the ‘‘overdamped’’ regime whe
this period is larger than the persistence length (v<g), and
local helical structure can no longer be defined in a stati
cally significant sense. An approximate but more physica
meaningful criterion for the ‘‘melting’’ transition is that a
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helix of period 2pv21 melts when the persistence leng
becomes of the order of this period.

We now return to Eq.~22! for the persistence length. Us
ing the matrix equation*0

`dsexp(2Ls)5L21 and taking
the appropriate matrix element we find

l p5
t0

21g1g2

k0
2~g1 cos2a01g2 sin2a0!1~t0

21g1g2!g3

. ~35!

The above expression diverges in the limit of a rigid he
g i→0 in which fluctuations have a negligible effect on t
helix. Nonmonotonic behavior is observed for ‘‘platelike
helices, with large radius to pitch ratio,k0 /t0. When no
thermal fluctuations are present (g i→0), the effective per-
sistence length approaches zero. Weak thermal fluctuat
‘‘inflate’’ the helix by releasing stored length~by a mecha-
nism similar to the stretching of the Slinky™ toy spring! and
increase the persistence length. Eventually, in the limit
strong fluctuations, the persistence length vanishes agai~as
g3

21) because of the complete randomization of the filame
Note that the sensitivity to the~constant! angle of twist in-
creases with radius to pitch ratio.

In the opposite limit of ‘‘rodlike’’ helicesk0→0, the ef-
fective persistence length approaches 1/g3 and therefore de-
pends ona1 and a2 only, and not ont0 and a3, which
describe the twist of the cross section about the center
This agrees with the expectation that since straight inex
sible rods do not have stored length, their end-to-end
tance and persistence length are determined by random b
ing and torsion ~writhe! fluctuations only and are
independent of twist.

B. Weak fluctuations: The rodlike chain model

From the discussion in the preceding section we exp
that in the presence of weak thermal fluctuations, the fi
ment will maintain its helical structure locally and that flu
tuations will only affect its large scale conformation by i
troducing random bending and torsion of the helical axis
well as random rotation of the filament about this axis. W
now rederive the expressions for the correlators, Eq.~34!,
using a different approach that relates our paper to tha
previous investigators@18# and, in the process, leads to im
portant insights about the nature of the long-wavelength fl
tuations that dominate the spectrum of fluctuations in t
regime.

Note that in the absence of thermal fluctuations,g i50,
the triad vectorst i attached to the helix can be expressed
terms of the space-fixed orthonormal triad$e% of vectors
ei , wheree3 is oriented along the long axis of the helix an
e1 and e2 lie in the plane normal to it~Fig. 2!. It is conve-
nient to introduce the Euler anglesf0(s)5v0s, u0
5arctan(k0 /t0), and a0 in terms of which the relation be
tween the two frames is given by

tR~s!5R3~a0!R2~2u0!R3@f0~s!#e, ~36!

where the rotation matrix
ns

f

t.

e.
n-
s-
nd-

ct
-

s
e

of

-
s

R3~f0!5S cosf0 sinf0 0

2sinf0 cosf0 0

0 0 1
D ~37!

describes rotation by anglef0(s) with respect to thee3 axis.
The matrix

R2~2u0!5S cosu0 0 2sinu0

0 1 0

sinu0 0 cosu0

D ~38!

gives the rotation by angle2u0 with respect to thee28 axis
(e285R3@f0(s)#e2), and R3(a0) is a rotation by anglea0

about thee38 axis @e385R2(2u0)e3#. Note that while the
space-fixede was taken as a conventional right-handed tria
we chose the helix-fixedt as a left-handed triad. Although
this choice does not affect our previous results, it does af
the geometric relation between the two coordinate syste
and, for consistency, we replaced the left-handedt by the
right-handed one,tR5(2t1 ,t2 ,t3), in Eq. ~36!.

In the presence of weak thermal fluctuations, the axis
the helix slowly bends and rotates in space, resulting in
tation of the triad$e%. Since with each points on the helix
we can associate its projection

s5t0s/v0 ~39!

on the long axis of the helix~see Fig. 2!, the rotation of the
triad $e% as one moves along this axis is given by the gen
alized Frenet equations,

FIG. 2. Schematic plot of section of a ribbonlike helix. Th
helix-fixed coordinate systemt at contour points8 is shown. The
solid line describes the associated ‘‘rodlike chain’’ to which t
coordinate systeme is attached at points on its contour. The points
s ands8 on the rodlike chain are the projections of the pointss and
s8, respectively.
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7140 PRE 62S. PANYUKOV AND Y. RABIN
de1

ds
5Ã2e32Ã3e2 ,

de2

ds
52Ã1e31Ã3e1 ,

~40!
de3

ds
5Ã1e22Ã2e1 .

The generalized torsions,Ã i(s), are Gaussian random var
ables determined by the conditions

^Ã i~s!&50, ^Ã i~s!Ã j~s8!&5āi
21d i j d~s2s8!,

~41!

where the constantsāi should be determined by the requir
ment that the resulting expressions for the correlators~the
averages of the elements of the rotation matrix! coincide
with these in Eq.~34!. A calculation similar to that in the
previous section yields the correlators

^ei~s!ej~s8!&5d i j exp~2ḡ i us2s8u!, ~42!

where, analogously to Eq.~20!, we have

ḡ i5(
k

1

2āk

2
1

2āi

. ~43!

Using Eqs.~36!, the correlators of the original triad$t% can
be expressed in terms of the correlators of the$e% triad.
Comparing the results with Eq.~34!, gives

ā1
215ā2

215(
i

g i

v0i
2

v0t0
, ā3

215(
i

1

ai

v0i
2

v0t0
, ~44!

where the equalityā15ā2 is the consequence of symmet
under rotation in the (e1 ,e2) plane.

The correlators~41! can be derived from an effective fre
energy that describes the long-wavelength fluctuations of
helical filament, on length scales larger than the period of
helix v0

21.

Uel
LW5

kT

2 E ds@ ā1~Ã1
21Ã2

2!1ā3Ã3
2#. ~45!

This expression coincides with the elastic energy of a rod
chain ~RLC! introduced by Bouchiat and Mezard@18#. The
persistence lengthā1 describes the elastic response to be
ing and torsion of the effective rodlike filament. The pers
tence lengthā3 controls the elastic response of the RLC
twist about its axis. As a consequence of the fluctuati
dissipation theorem, it also determines the amplitude of fl
tuationsDf of the anglef(s)5v0

2s/t01Df(s), where
the correlator of the random angle of rotation about the a
of the RLC is given by

^@Df~s!2Df~s8!#2&5ā3
21us2s8u. ~46!

In Eq. ~44! we calculated the effective persistence leng
of this model (āi) in terms of the bare parameters of th
underlying helical filament. In Ref.@18# where the analysis
begins with the RLC model, these corresponding persiste
lengths were introduced by hand. The difference between
e
e

e

-
-

-
-

is

s

ce
he

two models becomes important if one considers the co
bined application of extension and twist: while such a co
pling appears trivially in models of stretched helical fil
ments@23#, twist has no effect on the extension in the RL
model @18#, in contradiction with experimental observation
@6#. Our analysis underscores the fact that the RLC mo
does not give a complete description of the fluctuating he
Rather, it describes long-wavelength fluctuations of
‘‘phantom’’ axes$ei% which, by themselves, contain no in
formation about the local helical structure of the filament.
order to recover this information and construct the corre
tors of the original helix̂ t i(s1)t i(s2)&, one has to go beyond
the RLC model and reconstruct the local helical geome
using the relation betweenei and the helix-fixed axest i , Eqs.
~36!.

In deriving the expressions for the correlators^t i(s)t j (0)&
in terms of the correlators of the RLC model, we did not ta
into account the possibility of fluctuations of the twist ang
of the cross section of the helix about its centerline,a0
→a(s)5a01Da(s). From the fact that the resulting corr
elators coincide with the exact expressions, Eq.~34!, we con-
clude that such fluctuations do not contribute to the corre
tors. This surprising result follows from the fact that in th
weak fluctuation regime, the statistical properties of the he
are completely determined by the low-energy part of
fluctuation spectrum. Such long-wavelength fluctuati
modes~Goldstone modes! lead to the loss of helical correla
tions on length scales larger than all the natural length sc
of the helix (s>g21@v0

21). These Goldstone modes a
associated with spontaneously broken continuous sym
tries and correspond to bending (Ã1 andÃ2) and twist (Ã3)
modes of the RLC. It is important to emphasize that the
modes correspond to different deformations of the center
of the helix and not to twist of its cross section about th
centerline. Since the elastic energy, Eq.~10!, depends on the
spontaneous angle of twist of the helix about its centerl
through the combinationsdv15k cosa2k0 cosa0 anddv2
5k sina2k0 sina0, we conclude that the energy is not in
variant under global rotation of the cross section about
centerline and that such a rotation is not a continuous s
metry of the helix. Therefore, twist fluctuations of the helic
cross section are not Goldstone modes and do not contri
to the correlators in the weak fluctuation limit.

Another interesting observation is that there is no con
bution from compressional modes to the long-wavelen
energy, Eq.~10!. This is surprising since the RLC is
coarse-grained representation of the helix and the latter
be expected to behave as a compressible object, with ac
dionlike compressional modes@19#. In order to check this
point, we write down the spatial position of a points on the
helix as

x~s!5 x̄~s!1dx~s!, ~47!

wherex̄(s) describes the curve spanned by the long axis
the helix and, therefore, defines the spatial position of
point s, Eq. ~39!, on the RLC contour. The deviationdx(s)
describes the rotation of the locally helical filament abo
this axis. Since the original filament is incompressible,
satisfiesdxÕds5t3. From Eq.~36! we obtain an expression
for t3 which, upon substitution into the incompressibili
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condition and averaging over length scales$uÃ i u21%@s
@v0

21 ~much larger than the inverse total curvature of t
helix but much smaller than the radii of curvature of t
RLC!, yields

dx̄~s!

ds
5e3~s!. ~48!

The fact that the long-wavelength fluctuations of the he
satisfy the above incompressibility conditions, implies th
compressional fluctuations do not contribute to the lo
wavelength correlators. The origin of this observation b
comes clear if we recall that the energy of the helix depe
on the spontaneous curvaturek0 and torsiont0 and, since
compressional modes change the local curvature and tor
they have a gap in the energy spectrum and their energy
not vanish even in the long-wavelength limit. We conclu
that similar to twist fluctuations of the helical cross sectio
compressional modes are not Goldstone modes.

The above deliberations have profound consequence
the elastic response of the filament to long-wavelength p
turbations, such as tensile forces and moments applied t
ends. Using the fluctuation-dissipation theorem, we concl
that as long as the deformation of the filament remains sm
~on scalev0

21), these forces and moments do not induce
twist of the cross section of the helix about its centerline, a
that the deformation can be completely described by the
compressible RLC model.

C. Effect of spontaneous twist

We proceed to calculate the persistence length of a h
whose cross section is twisted by an anglea0(s)5ȧ0s about
the centerline (ȧ0 is a constant rate of twist!. It is convenient
to rewrite Eq.~22! as

l p5 lim
L→`

1

LE0

L

ds8E
0

L2s8
dŝ t3~s1s8!t3~s8!&. ~49!

Recall that the correlator in the integrand of Eq.~49! is sim-
ply the ~3,3! element of the averaged rotation matrix, and
therefore the solution of Eq.~15!, the coefficients of which
are the elements of the matrixL(s1s8) defined in Eq.~21!.
The diagonal elements of this matrix are constants (g i),
while the nondiagonal elements are given by the express

L12~s1s8!52L21~s1s8!5t01ȧ0 ,

L31~s1s8!52L13~s1s8!5k0 sin~ ȧ0s1a0!,

L23~s1s8!52L32~s1s8!5k0 cos~ ȧ0s1a0!, ~50!

where all the dependence ons8 is contained in a0
5a0(s8).

The correlator in Eq.~49! decays exponentially fast with
s, and thus the upper limit on the integral overs can be
extended to infinity. Since the correlator is a periodic fun
tion of a0, the integration overs8 can be replaced by tha
over a0 and we obtain
t
-
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,

for
r-
its
e
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l p5E
0

2pda0

2p E
0

`

dŝ t3~s!t3~s2s1!&. ~51!

In deriving the above expression we assumed that the l
L→` is taken and that the total angle of twist is alwa
large,Lȧ0@2p ~i.e., the productLȧ0 remains finite for ar-
bitrarily small ȧ0). This assumption will be used in the fo
lowing analysis.

We first consider some limiting cases in which analytic
results can be derived. In the limit of vanishing twist rate
ȧ0→0, the persistence length is obtained by averaging
~35! with respect toa0. This yields

l p5
t0

21g1
2 2g2

2

A@k0
2g11~t0

21g1
2 2g2

2 !g3#22k0
4g2

2
, ~52!

where

g6[~g16g2!/2 ~53!

with g1 andg2 defined in Eq.~20!.
In the limit of large twist rates,ȧ0→`, we can replace

the denominator of Eq.~35! by its average with respect t
a0. This yields

l p5
t0

21g1
2

k0
2g11~t0

21g1
2 !g3

. ~54!

Finally, wheng15g2 (a15a2), the persistence length be
comes independent of twist and can be derived from eithe
Eqs.~ 52! and ~54!, by substitutingg250.

We now consider the case of arbitrary twist rates a
fluctuation amplitudes. The calculation involves the soluti
of linear differential equations with periodic coefficients a
details are given in Appendix B. We obtain

l p5
g3

21

11~J21!211~J* 21!21
. ~55!

An analytical expression for the complex functionJ(ȧ0) is
given in Appendix B.

In Fig. 3 we present a three-dimensional plot of the p
sistence length given in units of the helical pitchl *
5 lv0

2/pt0, as a function of the dimensionless rate of tw

w52v0
21ȧ0 and of the logarithm of the bare persisten

lengtha1 , for a ‘‘platelike’’ helix with large radius to pitch
ratio k0 /t0. Inspection of Fig. 3 shows that in the case o
circular cross section witha15a251000, the persistence
length becomes independent of twist. With increasing asy
metry,a1,a2, a maximum appears at vanishing twist rate
accompanied by two minima atȧ056v0/2. The geometri-
cal significance of the locations (ȧ050,6v0/2) of these
resonances is underscored by the observation that in the
of vanishing pitch, a ribbonlike untwisted (ȧ050) helix de-
generates into a ring. Forȧ056v0/2, the cross section of a
twisted helix rotates by6p with each period, and in the
above limit the helix degenerates into a Mo¨bius ring. As
asymmetry increases (a1!a2), each extremum splits into a
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7142 PRE 62S. PANYUKOV AND Y. RABIN
minimum and a maximum and eventually one obtains a
at ȧ050, accompanied by two symmetrical peaks atȧ0.
6v0/2. Note that the persistence length is a nonmonoto
function of the amplitude of thermal fluctuations~i.e., of
1/a1): it first slowly increases and eventually decreases r
idly with decreasinga1. Several two-dimensional plots o
the persistence length as a function of the rate of twist,
different combinations of the bare persistence lengthsai , are
shown in Fig. 4. The detailed behavior of the persiste
length depends sensitively on the choice of the parame
for example, in the limit of weak fluctuations three maxim
are observed in Fig. 4, instead of a maximum accompan
by two minima in Fig. 3. In all cases, the locations of t
extrema are determined by geometry only:ȧ050, 6v0/2.

In order to demonstrate how the initial choice of the han
edness of the helix breaks the symmetry between the eff
of under and over twist on the persistence length, in Fig

FIG. 3. Three-dimensional plot of the persistence lengthl * as a
function of the dimensionless rate of twistw and of the bare per-
sistence lengtha1 ~logarithmic scale!, for a helical filament with
spontaneous curvaturek051, and torsiont050.01 ~in arbitrary
units!. The bare persistence lengths area251000 anda355000.

FIG. 4. Plot of the persistence lengthl * as a function of the
dimensionless rate of twistw for a helical filament with spontane
ous curvaturek051 and torsiont050.01 ~in arbitrary units!. The
different curves correspond to different bare persistence lengths~1!
a15100, a25a355000, ~2! a151, a25a35100, ~3! a150.1,
a25a3510, and~4! a150.01, a25a3510. A magnified view of
the region of small twist rates is shown in the inset.
p
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we present a three-dimensional plot of the persistence le
as a function of the dimensionless rate of twistw and of the
inverse radius of curvaturek0, for helices with radius to
pitch ratios of order unity and large asymmetry of the cro
section,a1@a2. Note that fork0 /t0,1 ~rodlike helices!,
there is a single broad maximum atȧ052v0/2. Then, at
k0 /t0.1, a central peak appears atȧ050. This peak grows
much faster than theȧ052v0/2 peak, with increasing
k0 /t0. At yet higher values ofk0 /t0 another peak appear
at ȧ05v0/2 and eventually the amplitudes of the two M¨-
bius side peaks become equal~and much smaller than th
amplitude of theȧ050 peak! in the limit of platelike helices,
k0 /t0@1 ~see curve 1 in Fig. 4!.

What is the origin of the Mo¨bius resonances observed
Figs. 3–5? Recall that the calculation of the persiste
length of a twisted helix involves the solution of linear di
ferential equations with periodic coefficients@Eqs. ~B1! in
Appendix B#. These equations were derived from linear d
ferential equations with periodic coefficients and multiplic
tive random noise, Eqs.~3! and Eqs.~6!, which are known to
lead to stochastic resonances@25#. Some physical intuition
can be derived from the following argument. While the pe
sistence length is a property of the space curve describe
the Frenet triad, the microscopic Brownian motion of t
filament arises as the result of random forces that act on
cross section and therefore are given in the frame assoc
with the principal axes of the filament. Since the two fram
are related by a rotation of the cross section by an an
a0(s), the random force in the Frenet frame is modulated
linear combinations of sina0(s) and cosa0(s). This gives a
deterministic contribution to the persistence length which
lowest order in the force, is proportional to the mean-squ
amplitude of the random force and therefore varies sinu
dally with 62a0(s). The Möbius resonances occur when
ever the total curvature of the helixv0 coincides with the
rate of variation of this deterministic contribution of the ra
dom force,62ȧ0.

IV. DISCUSSION

In this paper we studied the statistical mechanics of th
mally fluctuating elastic filaments with arbitrary spontaneo

FIG. 5. Three-dimensional plot of the persistence lengthl * as a
function of the dimensionless rate of twistw and of the spontaneou
curvaturek0, for a helical filament with spontaneous torsiont0

51 ~in arbitrary units!. The bare persistence lengths area15500,
a251, anda35500.
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curvature and twist. We constructed the equations for
orientational correlation functions and for the persisten
length of such filaments. We would like to stress that o
theory describes arbitrarily large deviations of a long fi
ment from its equilibrium shape; the only limitation is th
fluctuations are small on microscopic length scales, of
order of the thickness of the filament. Furthermore, since
equilibrium shape and the fluctuations of the filaments
completely described by the set of spontaneous tors
$v0k% and its fluctuations$dvk%, respectively, our theory is
set up in the language of intrinsic geometry of the sp
curves. All the interesting statistical information is contain
in the correlators of the triad vectors$t% which can be ex-
pressed in terms of the known correlators of the fluctuati
$dvk%, using the Frenet equations. Since these equations
scribe pure rotation of the triad vectors, this has the adv
tage that fluctuations of the torsions introduce only rand
rotations of the vectors of the triad, and preserve their u
norm. The use of intrinsic geometry automatically ensu
that the inextensibility constraint is not violated in the pr
cess of thermal fluctuations and therefore does not even
to be considered explicitly in our approach. We would like
remind the readers that the formidable mathematical diffic
ties associated with attempts to introduce this constra
have hindered the development of persistent chain type m
els in the past and led to the introduction of the mean sph
cal approximation in which the constraint is enforced only
the average, and to perturbative expansions about the str
rod limit.

The general formalism was then applied to helical fi
ments both with and without twist of the cross section ab
the centerline. In the latter case we found that weak ther
fluctuations are dominated by long-wavelength Goldsto
modes that correspond to bending and twist of the coa
grained filament~the rodlike chain!. Such fluctuations distor
the helix on length scales much larger than its natural pe
but do not affect its local structure and, in particular, do n
change the angle of twist of the cross section about the
terline. Strong thermal fluctuations lead to melting of t
helix, accompanied by complete loss of local helical str
ture. Depending on the parameters of the helix, the per
tence length is a nonmonotonic function of the strength
thermal fluctuations, and may first increase and then decr
as the amplitude of fluctuations is increased. Resonant p
and dips in plots of the persistence length versus the spo
neous rate of twist are observed both for small twist rates
for rates equal to half the total curvature of the helix, ph
nomena which bear some formal similarity to stochas
resonances.

There are several possible directions in which the pres
paper can be extended. We did not consider here the ef
of excluded volume and other nonelastic interactions, on
statistical properties of fluctuating filaments. Such an ana
sis requires the introduction of a field theoretical descript
of the filaments@26#. While this approach is interesting in it
own right, we expect that the excluded volume exponent
the scaling of the end-to-end distance of a single filam
will be identical to that of a Gaussian polymer chain~self-
avoiding random walk!. However, new effects related t
liquid-crystalline ordering are expected in dense phase
such filaments. Another possible extension of the model
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lates to the elasticity of random heteropolymers, w
quenched distribution of elastic constants and/or spontane
torsions@27#.

A natural application of our theory involves the modelin
of mechanical properties and conformational statistics of c
ral biomolecules such as DNA and RNA. The advantage
our theory is that it allows us to take into account, in an ex
manner, the effects of thermal fluctuations on the persiste
length and other elastic parameters of the filament. Thus,
generalization of the theory to include the effect of tens
forces and torques applied to the ends of the filament
expected to lead to new predictions for mechanical stretch
experiments in the intermediate deformation regime, for t
sile forces that affect the global but not the local~on length
scales< l p) conformation of the filament. Measurements
the effect of elongation on thermal fluctuations of the m
ecule, can give information about its elastic constants,
help resolve long-standing questions regarding the nat
curvature of DNA@28,29#. It is interesting to compare ou
expression for the persistence length to that of Trifonovet al.
@28# who proposed that the apparent persistence lengthl a of
DNA depends not only on the rigidity~dynamic persistence
lengthl d), but also on the intrinsic curvature of the molecu
~static persistence lengthl s). The apparent persistence leng
is given in terms of the two others as

1

l a
5

1

l d
1

1

l s
. ~56!

Note that the philosophy of the above approach is very si
lar to ours — we begin with filaments which have som
given intrinsic length ~spontaneous radius of curvatur
torsion!, and find that the interplay between this length a
thermal fluctuations gives rise to a persistence lengthl p . In
fact, taking for simplicity the case of a circular cross sectio
a15a2, our expression Eq.~35!, can be recast into the form
of Eq. ~56!, with

l a5 l p , l d5a1 , l s5k0
22~g11t0

2/g1!. ~57!

Indeed, in our model,a1 is the bare persistence length th
determines the length scale on which the filament is
formed by thermal bending and torsion fluctuations. Our a
log of the static persistence lengthl s depends on the sponta
neous bending ratek0 and diverges in the case of a straig
filament (k0→0), in which casel a→ l d . If we make the
further assumption that twist rigidity is much smaller th
the bending rigidity,a3!a1, the static persistence lengt
becomes independent of the bending rigidity and depend
both the spontaneous curvature and the twist rigidity. No
however, that the resultingk0

22 dependence ofl s differs
from the originally proposed one (k0

21) @28#.
Another possible application of our theory involves a ne

way of looking into the protein folding problem. Usually
one assumes that the folded conformation of proteins is
termined by the interactions between the constituent am
acids. A different approach, more closely related to
present paper, would be to reverse the common logic: ins
of trying to understand what kind of spatial structure w
result for a given primary sequence of amino acids, one
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7144 PRE 62S. PANYUKOV AND Y. RABIN
begin with a known equilibrium shape~native state! and at-
tempt to identify the parameters of an effective filament~dis-
tributions of spontaneous torsions$v0i(s)%) which will give
rise to this three-dimensional structure@30#. Knowledge
about the fluctuations and the melting of proteins can then
used to determine the distribution of the bare persiste
lengths$ai(s)%. Note that usingRi j (s,s8)5t i(s)t j (s8), and
Eqs.~16! and ~21!, yields

g id ik1(
l

« iklv0l5 lim
Ds→01

1

Ds
@d ik2^t i~s!tk~s2Ds!&#.

The diagonal elements of the correlator^t i(s)tk(s2Ds)& de-
termine the$g i% coefficients ~and, consequently, the bar
persistence lengths$ai%!, the nondiagonal elements dete
mine the set$v0i(s)%. We conclude that measurements
local correlations between the directions of the principal a
of symmetry of a fluctuating filament can, in principle, pr
vide complete information about its equilibrium shape a
elastic properties. While the question of whether such
approach can be successfully implemented in order to de
mine the relation between primary sequence and tern
structure remains open, our insights about the statist
properties of fluctuating filaments are clearly applicable
modeling ofa helices and other elements~e.g.,b sheets! of
secondary structure of proteins.
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APPENDIX A: CALCULATION OF CORRELATION
FUNCTIONS

We begin with the construction of the eigenvectors of
matrix L, defined by Eq.~21!, in the caseD.0 @see Eq.
~28!#, when there is one real eigenvaluel1 and two complex
ones,lR6 iv. Expanding this matrix over its eigenvector
we get

L i j 5l1ūiuj1~lR1 iv!v̄ iv j* 1~lR2 iv!v̄ i* v j , ~A1!

where the eigenvectorsu, ū, v, v̄ ~and the complex conju
gates of the latter two,v* and v̄* ) obey the orthonormality
conditions

(
i 51

3

ūiui5(
i 51

3

v̄ iv i* 51, (
i 51

3

ūiv i5(
i 51

3

v̄ iui5(
i 51

3

v̄ iv i50.

~A2!

Using these conditions we can exponentiate the matrixL

@e2Ls# i j 5ūiuje
2l1s1 v̄ iv j* e2(lR1 iv)s1 v̄ i* v je

2(lR2 iv)s.
~A3!
e
e

f
s

d
n
r-
ry
al
o

.
-
e

s

e

Since we are interested only in the diagonal elements
this matrix, it is convenient to introduce the notations

ci5 v̄ iv i* , (
i 51

3

ci51. ~A4!

In addition, substitutings50 in Eq. ~A3! we get

ūiui512ci2ci* . ~A5!

In order to find the complex coefficientsci we write down
expressions for diagonal elements of the matricesL andL2

g i5~12ci2ci* !l11ci~lR1 iv!1ci* ~lR2 iv!,

~g i2l1!22v0
21v0i

2 5~12ci2ci* !l1
21ci~lR1 iv!2

1ci* ~lR2 iv!2. ~A6!

Looking for the solution of these equations in the formci
5Reci1 i Im ci we get expressions for real and imagina
parts of complex parametersci

2 Reci5
2g i

212« i~l11R!12lRl11v0
22v0i

2

v21~l12lR!2
,

2v Im ci5l12g i12~lR2l1!Reci . ~A7!

APPENDIX B: PERSISTENCE LENGTH OF TWISTED
HELIX

Since the persistence length is defined by the~3,3! ele-
ment of the averaged rotation matrix, we will consider t
( i ,3) component of Eq.~15! which, using Eq.~13!, can be
expressed as an equation for the corresponding correlat

dgi

ds
52(

l
L i l ~s1s8!gl , gi~s,s8![^t i~s1s8!t3~s8!&

~B1!

with initial conditions g1(0,s8)5g2(0,s8)50 and g3(0,s8)
51. The matrixL(s1s8) was defined in Eq.~50!. Note that
since the onlys-dependent parameter of the helix is the an
of twist, the correlatorsgi(s,s8) depend ons8 only through
the parametera0(s8)5a0 and, in order to simplify the no-
tation, we will omit the second argument of these functio
in the following.

It is convenient to introduce the complex function

f ~s!5@g1~s!1 ig2~s!#e2 i (ȧ0s1a0) ~B2!

such thatf andg3 obey the coupled equations

d f

ds
1g1 f 1g2 f * e22i (ȧ0s1a0)52 ik0g31 i t0f ,

dg3

ds
1g3g352 ik0

1

2
~ f 2 f * !. ~B3!

Taking a Laplace transform of these equations,
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f̃ ~p![E
0

`

f ~s!e2psds, g̃3~p![E
0

`

g3~s!e2psds,

~B4!

wherep is, in general, a complex parameter, we get

~p1g12 i t0! f̃ ~p!1 ik0g̃3~p!52g2e22ia0 f̃ * ~p12i ȧ0!,
~B5!

~p1g3!g̃3~p!1 ik0

1

2
@ f̃ ~p!2 f̃ * ~p!#51. ~B6!

In deriving these equations, we used the initial conditio
f (0)50 andg3(0)51. Substitutingg̃3 from Eq. ~B6! into
Eq. ~B5!, we get a closed equation for the complex functi
f̃ :

F ~p1g12 i t0!~p1g3!1
k0

2

2 G f̃ ~p!1 ik02
k0

2

2
f̃ * ~p!

1g2~p1g3!e22ia0 f̃ * ~p12i ȧ0!50. ~B7!

Note that the persistence length is determined byg̃3(0),
which can be expressed throughf̃ (0)2 f̃ * (0), Eq.~B6!. The
latter functions can be calculated from Eq.~B7!, which upon
substitutingp522inȧ0 (n integer!, is recast in the standar
form of difference equations,

ank0 f̃ ~22inȧ0!12i 2k0 f̃ * ~22inȧ0!12g2bn

3e22ia0 f̃ * @22i ~n21!ȧ0#50, ~B8!

where we defined

an5112@g12 i ~t012nȧ0!#~g322inȧ0!/k0
2 ,

bn5~g322inȧ0!/k0 . ~B9!

Since the persistence length is defined as the averag
g̃3(0) with respect toa0, it is convenient to introduce di
mensionless functionshn as

hn5k0E
0

2pda0

2p
e2ina0 f̃ ~22inȧ0!. ~B10!

We multiply Eq. ~B8! by exp(2ina0) and average it with
respect toa0. Defining the parameter«52g2 /k0 we re-
write Eq. ~B8! in the form

anhn12idn02h2n* 1«bnh12n* 50 ~B11!

in which both hn and hm* enter. In order to derive close
equations for the set of$hn% only, we apply complex conju-
gation to the above equation and changen→2n. This yields

a2n* h2n* 22idn02hn1«bnhn1150. ~B12!

Substituting the equations forh2n* andh12n* into Eq. ~ B11!
we find
,

of

~an21/a2n* 2«2bnbn21 /a12n* !hn12i ~121/a2n* !dn0

12i«dn1bn /a12n* 1«hn11bn /a2n*

1«hn21bn /a12n* 50. ~B13!

Let us first consider the casenÞ0,1. Introducing new
variablesyn by the equalityhn115«ynhn we find

an21/a2n* 2«2bnbn21 /a12n* 1«2ynbn /a2n*

1yn21
21 bn /a12n* 50. ~B14!

We now define

An5~an21/a2n* !a12n* /bn2«2bn21 , Bn5a12n* /a2n*
~B15!

and get the following recurrence relation, valid forn
52,3, . . .

An11/yn211«2Bnyn50. ~B16!

We now taken52 in the above equation, and solve fory1in
terms of y2. Repeating this procedure~expressingy2 in
terms ofy3, etc.! we can write the solution as a continue
fraction

y1521/$A22«2B2 /@A32«2B3 /~A42••• !#%.
~B17!

Now consider the casen51 in Eq.~B13!. Using the defi-
nitions of A1 and B1, Eq. ~B15!, it can be recast into the
form

~A11«2B1y1!h112i«1«h050. ~B18!

In order to obtain a closed equation forh0, we return to Eq.
~B12! with n50,

a0* h0* 22i 2h01«b0h150. ~B19!

Eliminating h1 from the above two equations we find

h0522i 1Jh0* , ~B20!

where, using Eq.~B17!, J can be represented as a continu
fraction:

J5a0* /@11«2b0 /~A11«2B1y1!# ~B21!

5a0* /~11«2b0 /$A12«2B1 /@A22«2B2 /~A32••• !#%!.

~B22!

The solution of Eq.~B20! is

h0522i
12J

12uJu2
. ~B23!

Recall thath0 was defined as the integral overa0 of the
function f̃ (0) @Eq. ~B10!# which, in turn, determines the
Laplace transform atp50 of the correlatorg̃3 that appears
in the definition of the persistence length, Eq.~51!. Collect-
ing the above expressions we find



7146 PRE 62S. PANYUKOV AND Y. RABIN
l p5E
0

2pda0

2p
g̃3~0!5

1

g3
F12 i

1

2
~h02h0* !G5

g3
21

11~J21!211~J* 21!21
. ~B24!
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